The zebrafish colourless gene regulates development of non-ectomesenchymal neural crest derivatives.

نویسندگان

  • R N Kelsh
  • J S Eisen
چکیده

Neural crest forms four major categories of derivatives: pigment cells, peripheral neurons, peripheral glia, and ectomesenchymal cells. Some early neural crest cells generate progeny of several fates. How specific cell fates become specified is still poorly understood. Here we show that zebrafish embryos with mutations in the colourless gene have severe defects in most crest-derived cell types, including pigment cells, neurons and specific glia. In contrast, craniofacial skeleton and medial fin mesenchyme are normal. These observations suggest that colourless has a key role in development of non-ectomesenchymal neural crest fates, but not in development of ectomesenchymal fates. Thus, the cls mutant phenotype reveals a segregation of ectomesenchymal and non-ectomesenchymal fates during zebrafish neural crest development. The combination of pigmentation and enteric nervous system defects makes colourless mutations a model for two human neurocristopathies, Waardenburg-Shah syndrome and Hirschsprung's disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates.

Waardenburg-Shah syndrome combines the reduced enteric nervous system characteristic of Hirschsprung's disease with reduced pigment cell number, although the cell biological basis of the disease is unclear. We have analysed a zebrafish Waardenburg-Shah syndrome model. We show that the colourless gene encodes a sox10 homologue, identify sox10 lesions in mutant alleles and rescue the mutant pheno...

متن کامل

An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme.

The neural crest is a multipotent stem cell population that arises from the dorsal aspect of the neural tube and generates both non-ectomesenchymal (melanocytes, peripheral neurons and glia) and ectomesenchymal (skeletogenic, odontogenic, cartilaginous and connective tissue) derivatives. In amniotes, only cranial neural crest generates both classes, with trunk neural crest restricted to non-ect...

متن کامل

Transcription factor Ap-2alpha is necessary for development of embryonic melanophores, autonomic neurons and pharyngeal skeleton in zebrafish.

The genes that control development of embryonic melanocytes are poorly defined. Although transcription factor Ap-2alpha is expressed in neural crest (NC) cells, its role in development of embryonic melanocytes and other neural crest derivatives is unclear because mouse Ap-2alpha mutants die before melanogenesis. We show that zebrafish embryos injected with morpholino antisense oligonucleotides ...

متن کامل

Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent

Zebrafish lacking functional sox10 have defects in non-ectomesenchymal neural crest derivatives including the enteric nervous system (ENS) and as such provide an animal model for human Waardenburg Syndrome IV. Here, we characterize zebrafish phox2b as a functionally conserved marker of the developing ENS. We show that morpholino-mediated knockdown of Phox2b generates fish modeling Hirschsprung ...

متن کامل

lockjaw encodes a zebrafish tfap2a required for early neural crest development.

The neural crest is a uniquely vertebrate cell type that gives rise to much of the craniofacial skeleton, pigment cells and peripheral nervous system, yet its specification and diversification during embryogenesis are poorly understood. Zebrafish homozygous for the lockjaw (low) mutation show defects in all of these derivatives and we show that low (allelic with montblanc) encodes a zebrafish t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 127 3  شماره 

صفحات  -

تاریخ انتشار 2000